Glutathione-related antioxidant defenses in human atherosclerotic plaques.

نویسندگان

  • D Lapenna
  • S de Gioia
  • G Ciofani
  • A Mezzetti
  • S Ucchino
  • A M Calafiore
  • A M Napolitano
  • C Di Ilio
  • F Cuccurullo
چکیده

BACKGROUND Oxidative stress, resulting from an antioxidant/prooxidant imbalance, seems to be crucial in atherogenesis. Recent evidence has emerged, however, of a surprisingly high content of low-molecular-weight antioxidants in human atherosclerotic plaques, although other antioxidant systems have not been investigated in these lesions. METHODS AND RESULTS We studied glutathione-related antioxidant defenses (which play a key role in tissue antioxidant protection) in carotid atherosclerotic plaques of 13 patients subjected to endarterectomy and in normal internal mammary arteries of 13 patients undergoing coronary artery bypass surgery. Selenium-dependent glutathione peroxidase activity was undetectable in the plaques of 7 patients; the other 6 patients with plaques showed a mean enzymatic activity approximately 3.5-fold lower than that of mammary arteries. Glutathione reductase activity was also markedly lower in the plaques than in the arteries. Glutathione transferase instead had comparable activity in the two tissues. Remarkably, 5 of the 7 patients with an undetectable selenium-dependent glutathione peroxidase activity but none of the 6 with a detectable one were characterized by multivascular atherosclerotic involvement (3 patients) or stenosis of the contralateral carotid artery (2 patients). CONCLUSIONS A weak glutathione-related enzymatic antioxidant shield is present in human atherosclerotic lesions. Although the cause of this phenomenon remains to be determined, the present data suggest that a specific antioxidant/prooxidant imbalance operative in the vascular wall may be involved in atherogenic processes in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macrophage antioxidant protection within atherosclerotic plaques.

Macrophage cells within inflammatory lesions are exposed to a wide range of degrading and cytotoxic molecules including reactive oxygen species. Unlike neutrophils, macrophages do not normally die in this environment but continue to generate oxidants, phagocytose cellular remains, and release a range of cyto-active agents which modulate the immune response. It is this potential of the macrophag...

متن کامل

Effect of Helicobacter pylori DNA in human atherosclerotic plaques

Introduction: A number of studies have demonstrated that infectious mico organisms like helicobacter pylori may play a role in the process of atherosclerosis. We, here, aimed to investigate the effect of Helicobacter pylori DNA in atherosclerotic plaques in patients with coronary artery disease. Methods: In a cross-sectional study, 85 patients undergoing coronary artery bypass graft (CAB...

متن کامل

DETECTION AND RESTRICTION ANALYSIS OF C YTOMEGALOVIRUS DNA PERSISTING IN HUMAN ATHEROSCLEROTIC PLAQUES USING POLYMERASE CHAIN REACTION

The polymerase chain reaction (PCR) as applied to detection of a foreign DNA in clinical specimens could provide a sensitive instrument for rapid detection of viral DNA persisting in tissues of patients suspected of latent infection. Human cytomegalovirus (HCMV) DNA was found in arterial plaques of patients with atherosclerotic lesions using a PCR assay with nested primer oligonucleotides ...

متن کامل

Expression of glutaredoxin in human coronary arteries: its potential role in antioxidant protection against atherosclerosis.

Oxidative stress is considered an important factor in atherogenesis. Mammalian cells have a complex network of antioxidants such as catalase, superoxide dismutase, and glutathione peroxidase. However, the mechanisms that regulate the cellular redox state in the vessel wall remain unclear. Recent study has shown that thioredoxin, a thiol-disulfide oxidoreductase, is expressed in atherosclerotic ...

متن کامل

Upregulation of glutathione peroxidase offsets stretch-induced proatherogenic gene expression in human endothelial cells.

OBJECTIVE Localization of atherosclerotic plaques typically correlates with areas of biomechanical strain where shear stress is decreased while stretch, thought to promote atherogenesis through enhanced oxidative stress, is increased. METHODS AND RESULTS In human cultured endothelial cells, nitric oxide synthase expression was exclusively shear stress-dependent whereas expression of glutathio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 97 19  شماره 

صفحات  -

تاریخ انتشار 1998